数据库 发布日期:2024/12/27 浏览次数:1
数据量大的 key ,由于其数据大小远大于其他key,导致经过分片之后,某个具体存储这个 big key 的实例内存使用量远大于其他实例,造成内存不足,拖累整个集群的使用。big key 在不同业务上,通常体现为不同的数据,比如:
bigkey 通常会导致内存空间不平衡,超时阻塞,如果 key 较大,redis 又是单线程,操作 bigkey 比较耗时,那么阻塞 redis 的可能性增大。每次获取 bigKey 的网络流量较大,假设一个 bigkey 为 1MB,每秒访问量为 1000,那么每秒产生 1000MB 的流量,对于普通千兆网卡,按照字节算 128M/S 的服务器来说可能扛不住。而且一般服务器采用单机多实例方式来部署,所以还可能对其他实例造成影响。
redis-cli自带--bigkeys。
$ redis-cli -p 999 --bigkeys -i 0.1 #Scanning the entire keyspace to find biggest keys as well as average sizes per key type. You can use -i 0.1 to sleep 0.1 sec per 100 SCAN commands (not usually needed).
获取生产Redis的rdb文件,通过rdbtools分析rdb生成csv文件,再导入MySQL或其他数据库中进行分析统计,根据size_in_bytes统计bigkey
$ git clone https://github.com/sripathikrishnan/redis-rdb-tools $ cd redis-rdb-tools $ sudo python setup.py install $ rdb -c memory dump-10030.rdb > memory.csv
通过python脚本,迭代scan key,每次scan 1000,对扫描出来的key进行类型判断,例如:string长度大于10K,list长度大于10240认为是big bigkeys
其他第三方工具,例如:redis-rdb-cli
优化big key的原则就是string减少字符串长度,list、hash、set、zset等减少成员数。
string类型的big key,建议不要存入redis,用文档型数据库MongoDB代替或者直接缓存到CDN上等方式优化。有些 key 不只是访问量大,数据量也很大,这个时候就要考虑这个 key 使用的场景,存储在redis集群中是否是合理的,是否使用其他组件来存储更合适;如果坚持要用 redis 来存储,可能考虑迁移出集群,采用一主一备(或1主多备)的架构来存储。
单个简单的key存储的value很大
该对象需要每次都整存整取: 可以尝试将对象分拆成几个key-value, 使用multiGet获取值,这样分拆的意义在于分拆单次操作的压力,将操作压力平摊到多个redis实例中,降低对单个redis的IO影响;
该对象每次只需要存取部分数据: 可以像第一种做法一样,分拆成几个key-value,也可以将这个存储在一个hash中,每个field代表一个具体的属性,使用hget,hmget来获取部分的value,使用hset,hmset来更新部分属性。
hash, set,zset,list 中存储过多的元素
可以将这些元素分拆。以hash为例,原先的正常存取流程是 hget(hashKey, field) ; hset(hashKey, field, value)
现在,固定一个桶的数量,比如 10000, 每次存取的时候,先在本地计算field的hash值,模除 10000,确定了该field落在哪个key上。
newHashKey = hashKey + (hash(field) % 10000); hset(newHashKey, field, value) ; hget(newHashKey, field)
set, zset, list 也可以类似上述做法。但有些不适合的场景,比如,要保证 lpop 的数据的确是最早push到list中去的,这个就需要一些附加的属性,或者是在 key的拼接上做一些工作(比如list按照时间来分拆)。